Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic techniques in designing quantum synchronizable codes (1304.0502v3)

Published 1 Apr 2013 in quant-ph, cs.IT, and math.IT

Abstract: Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the previously known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces.

Citations (35)

Summary

We haven't generated a summary for this paper yet.