Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the Duffin-Schaeffer conjecture (1304.0488v1)

Published 1 Apr 2013 in math.NT

Abstract: Given a sequence of real numbers ${\psi(n)}{n\in\mathbb{N}}$ with $0\leq \psi(n)<1$, let $W(\psi)$ denote the set of $x\in[0,1]$ for which $|xn-m|<\psi(n)$ for infinitely many coprime pairs $(n,m)\in\mathbb{N}\times\mathbb{Z}$. The purpose of this note is to show that if there exists an $\epsilon>0$ such that $\sum{n\in\mathbb{N}}\psi(n){1+\epsilon}\cdot\frac{\varphi(n)}{n}=\infty,$ then the Lebesgue measure of $W(\psi)$ equals 1.

Summary

We haven't generated a summary for this paper yet.