Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Efficiency characterization of a large neuronal network: a causal information approach (1304.0399v2)

Published 1 Apr 2013 in q-bio.NC

Abstract: When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with large proportion of inhibitory neurons. Each neuron fires following a Hodgkin-Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of inter-connectivity across neurons. More specifically we take into account the fine temporal ``structures'' of the complex neuronal signals not just by using the probability distributions associated to the inter spike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of inter-connectivity across neurons grows, inferring the emergent dynamical properties of the system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.