Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the symmetrical Kullback-Leibler Jeffreys centroids (1303.7286v3)

Published 29 Mar 2013 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: Due to the success of the bag-of-word modeling paradigm, clustering histograms has become an important ingredient of modern information processing. Clustering histograms can be performed using the celebrated $k$-means centroid-based algorithm. From the viewpoint of applications, it is usually required to deal with symmetric distances. In this letter, we consider the Jeffreys divergence that symmetrizes the Kullback-Leibler divergence, and investigate the computation of Jeffreys centroids. We first prove that the Jeffreys centroid can be expressed analytically using the Lambert $W$ function for positive histograms. We then show how to obtain a fast guaranteed approximation when dealing with frequency histograms. Finally, we conclude with some remarks on the $k$-means histogram clustering.

Citations (8)

Summary

We haven't generated a summary for this paper yet.