Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling Zeus (1303.7012v1)

Published 28 Mar 2013 in cs.CR

Abstract: Malware family classification is an age old problem that many Anti-Virus (AV) companies have tackled. There are two common techniques used for classification, signature based and behavior based. Signature based classification uses a common sequence of bytes that appears in the binary code to identify and detect a family of malware. Behavior based classification uses artifacts created by malware during execution for identification. In this paper we report on a unique dataset we obtained from our operations and classified using several machine learning techniques using the behavior-based approach. Our main class of malware we are interested in classifying is the popular Zeus malware. For its classification we identify 65 features that are unique and robust for identifying malware families. We show that artifacts like file system, registry, and network features can be used to identify distinct malware families with high accuracy---in some cases as high as 95%.

Citations (89)

Summary

We haven't generated a summary for this paper yet.