Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraint Propagation with Imprecise Conditional Probabilities (1303.5706v1)

Published 20 Mar 2013 in cs.AI

Abstract: An approach to reasoning with default rules where the proportion of exceptions, or more generally the probability of encountering an exception, can be at least roughly assessed is presented. It is based on local uncertainty propagation rules which provide the best bracketing of a conditional probability of interest from the knowledge of the bracketing of some other conditional probabilities. A procedure that uses two such propagation rules repeatedly is proposed in order to estimate any simple conditional probability of interest from the available knowledge. The iterative procedure, that does not require independence assumptions, looks promising with respect to the linear programming method. Improved bounds for conditional probabilities are given when independence assumptions hold.

Citations (76)

Summary

We haven't generated a summary for this paper yet.