Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi Conjunction, Quasi Disjunction, T-norms and T-conorms: Probabilistic Aspects (1303.5016v1)

Published 20 Mar 2013 in math.PR and cs.AI

Abstract: We make a probabilistic analysis related to some inference rules which play an important role in nonmonotonic reasoning. In a coherence-based setting, we study the extensions of a probability assessment defined on $n$ conditional events to their quasi conjunction, and by exploiting duality, to their quasi disjunction. The lower and upper bounds coincide with some well known t-norms and t-conorms: minimum, product, Lukasiewicz, and Hamacher t-norms and their dual t-conorms. On this basis we obtain Quasi And and Quasi Or rules. These are rules for which any finite family of conditional events p-entails the associated quasi conjunction and quasi disjunction. We examine some cases of logical dependencies, and we study the relations among coherence, inclusion for conditional events, and p-entailment. We also consider the Or rule, where quasi conjunction and quasi disjunction of premises coincide with the conclusion. We analyze further aspects of quasi conjunction and quasi disjunction, by computing probabilistic bounds on premises from bounds on conclusions. Finally, we consider biconditional events, and we introduce the notion of an $n$-conditional event. Then we give a probabilistic interpretation for a generalized Loop rule. In an appendix we provide explicit expressions for the Hamacher t-norm and t-conorm in the unitary hypercube.

Citations (44)

Summary

We haven't generated a summary for this paper yet.