Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Asymptotic Normality of Random Sums of m-dependent Random Variables (1303.2386v1)

Published 10 Mar 2013 in math.PR

Abstract: We prove a central limit theorem for random sums of the form $\sum_{i=1}{N_n} X_i$, where ${X_i}{i \geq 1}$ is a stationary $m-$dependent process and $N_n$ is a random index independent of ${X_i}{i\geq 1}$. Our proof is a generalization of Chen and Shao's result for i.i.d. case and consequently we recover their result. Also a variation of a recent result of Shang on $m-$dependent sequences is obtained as a corollary. Examples on moving averages and descent processes are provided, and possible applications on non-parametric statistics are discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)