Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate k-nearest neighbour based spatial clustering using k-d tree (1303.1951v1)

Published 8 Mar 2013 in cs.DB

Abstract: Different spatial objects that vary in their characteristics, such as molecular biology and geography, are presented in spatial areas. Methods to organize, manage, and maintain those objects in a structured manner are required. Data mining raised different techniques to overcome these requirements. There are many major tasks of data mining, but the mostly used task is clustering. Data set within the same cluster share common features that give each cluster its characteristics. In this paper, an implementation of Approximate kNN-based spatial clustering algorithm using the K-d tree is proposed. The major contribution achieved by this research is the use of the k-d tree data structure for spatial clustering, and comparing its performance to the brute-force approach. The results of the work performed in this paper revealed better performance using the k-d tree, compared to the traditional brute-force approach.

Citations (56)

Summary

We haven't generated a summary for this paper yet.