Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Monte Carlo Based Algorithm for the Gaussian Process Classification Problem (1302.7220v2)

Published 28 Feb 2013 in stat.ML

Abstract: Gaussian process is a very promising novel technology that has been applied to both the regression problem and the classification problem. While for the regression problem it yields simple exact solutions, this is not the case for the classification problem, because we encounter intractable integrals. In this paper we develop a new derivation that transforms the problem into that of evaluating the ratio of multivariate Gaussian orthant integrals. Moreover, we develop a new Monte Carlo procedure that evaluates these integrals. It is based on some aspects of bootstrap sampling and acceptancerejection. The proposed approach has beneficial properties compared to the existing Markov Chain Monte Carlo approach, such as simplicity, reliability, and speed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.