Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Realizing stock market crashes: stochastic cusp catastrophe model of returns under the time-varying volatility (1302.7036v2)

Published 27 Feb 2013 in q-fin.ST

Abstract: This paper develops a two-step estimation methodology, which allows us to apply catastrophe theory to stock market returns with time-varying volatility and model stock market crashes. Utilizing high frequency data, we estimate the daily realized volatility from the returns in the first step and use stochastic cusp catastrophe on data normalized by the estimated volatility in the second step to study possible discontinuities in markets. We support our methodology by simulations where we also discuss the importance of stochastic noise and volatility in deterministic cusp catastrophe model. The methodology is empirically tested on almost 27 years of U.S. stock market evolution covering several important recessions and crisis periods. Due to the very long sample period we also develop a rolling estimation approach and we find that while in the first half of the period stock markets showed marks of bifurcations, in the second half catastrophe theory was not able to confirm this behavior. Results suggest that the proposed methodology provides an important shift in application of catastrophe theory to stock markets.

Summary

We haven't generated a summary for this paper yet.