Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Value of Evidence on Influence Diagrams (1302.6805v1)

Published 27 Feb 2013 in cs.AI

Abstract: In this paper, we introduce evidence propagation operations on influence diagrams and a concept of value of evidence, which measures the value of experimentation. Evidence propagation operations are critical for the computation of the value of evidence, general update and inference operations in normative expert systems which are based on the influence diagram (generalized Bayesian network) paradigm. The value of evidence allows us to compute directly an outcome sensitivity, a value of perfect information and a value of control which are used in decision analysis (the science of decision making under uncertainty). More specifically, the outcome sensitivity is the maximum difference among the values of evidence, the value of perfect information is the expected value of the values of evidence, and the value of control is the optimal value of the values of evidence. We also discuss an implementation and a relative computational efficiency issues related to the value of evidence and the value of perfect information.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)