Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of some multivariate Markov chains using stochastic monotonicity (1302.5606v1)

Published 22 Feb 2013 in math.PR

Abstract: We provide a nonasymptotic analysis of convergence to stationarity for a collection of Markov chains on multivariate state spaces, from arbitrary starting points, thereby generalizing results in [Khare and Zhou Ann. Appl. Probab. 19 (2009) 737-777]. Our examples include the multi-allele Moran model in population genetics and its variants in community ecology, a generalized Ehrenfest urn model and variants of the Polya urn model. It is shown that all these Markov chains are stochastically monotone with respect to an appropriate partial ordering. Then, using a generalization of the results in [Diaconis, Khare and Saloff-Coste Sankhya 72 (2010) 45-76] and Wilson Ann. Appl. Probab. 14 (2004) 274-325 to multivariate partially ordered spaces, we obtain explicit nonasymptotic bounds for the distance to stationarity from arbitrary starting points. In previous literature, bounds, if any, were available only from special starting points. The analysis also works for nonreversible Markov chains, and allows us to analyze cases of the multi-allele Moran model not considered in [Khare and Zhou Ann. Appl. Probab. 19 (2009) 737-777].

Summary

We haven't generated a summary for this paper yet.