Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Seeding Influential Nodes in Non-Submodular Models of Information Diffusion (1302.5455v2)

Published 22 Feb 2013 in cs.SI and physics.soc-ph

Abstract: We consider the model of information diffusion in social networks from \cite{Hui2010a} which incorporates trust (weighted links) between actors, and allows actors to actively participate in the spreading process, specifically through the ability to query friends for additional information. This model captures how social agents transmit and act upon information more realistically as compared to the simpler threshold and cascade models. However, it is more difficult to analyze, in particular with respect to seeding strategies. We present efficient, scalable algorithms for determining good seed sets -- initial nodes to inject with the information. Our general approach is to reduce our model to a class of simpler models for which provably good sets can be constructed. By tuning this class of simpler models, we obtain a good seed set for the original more complex model. We call this the \emph{projected greedy approach} because you `project' your model onto a class of simpler models where a greedy seed set selection is near-optimal. We demonstrate the effectiveness of our seeding strategy on synthetic graphs as well as a realistic San Diego evacuation network constructed during the 2007 fires.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.