Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust AFPTAS for Online Bin Packing with Polynomial Migration (1302.4213v1)

Published 18 Feb 2013 in cs.DS

Abstract: In this paper we develop general LP and ILP techniques to find an approximate solution with improved objective value close to an existing solution. The task of improving an approximate solution is closely related to a classical theorem of Cook et al. in the sensitivity analysis for LPs and ILPs. This result is often applied in designing robust algorithms for online problems. We apply our new techniques to the online bin packing problem, where it is allowed to reassign a certain number of items, measured by the migration factor. The migration factor is defined by the total size of reassigned items divided by the size of the arriving item. We obtain a robust asymptotic fully polynomial time approximation scheme (AFPTAS) for the online bin packing problem with migration factor bounded by a polynomial in $\frac{1}{\epsilon}$. This answers an open question stated by Epstein and Levin in the affirmative. As a byproduct we prove an approximate variant of the sensitivity theorem by Cook at el. for linear programs.

Citations (31)

Summary

We haven't generated a summary for this paper yet.