Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sound Abstraction of Probabilistic Actions in The Constraint Mass Assignment Framework (1302.3574v1)

Published 13 Feb 2013 in cs.AI

Abstract: This paper provides a formal and practical framework for sound abstraction of probabilistic actions. We start by precisely defining the concept of sound abstraction within the context of finite-horizon planning (where each plan is a finite sequence of actions). Next we show that such abstraction cannot be performed within the traditional probabilistic action representation, which models a world with a single probability distribution over the state space. We then present the constraint mass assignment representation, which models the world with a set of probability distributions and is a generalization of mass assignment representations. Within this framework, we present sound abstraction procedures for three types of action abstraction. We end the paper with discussions and related work on sound and approximate abstraction. We give pointers to papers in which we discuss other sound abstraction-related issues, including applications, estimating loss due to abstraction, and automatically generating abstraction hierarchies.

Citations (14)

Summary

We haven't generated a summary for this paper yet.