Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

A Superdimensional Dual-covariant Field Theory (1302.3269v6)

Published 11 Feb 2013 in physics.gen-ph

Abstract: An approach to a Unified Field Theory (UFT) is developed as an attempt to establish unification of the Theory of Quantum Fields (QFT) and General Theory of Relativity (GTR) on the background of a covariant differential calculus. A dual State Vector field (DSV)consisting of covariant and contravariant N-component functions of variables of a N-dimensional unified manifod (UM)is introduced to represents matter. DSV is supposed to transform in a way distinct from that of the differentials of the UM variables. Consequently, the hybrid tensors and a hybrid affine tensor (Dynamic Connection, DC) are introduced. The hybrid curvature form (HCF) is introduced as a covariant derivative of DC. A system of covariant Euler-Lagrange (EL) equations for DSV, DC, and a twin couple of the triadic hybrid tensors (Split Metric, SM)is derived. A scalar Lagrangian form is composed based on a set of principles suited for UFT, including the homogeneity in the UM space, differential irreducibility and scale invariance. The type of the manifold geometry is not specified in advance, in neither local (signature) nor regional (topology) aspects. Equations for DSV play role of the Schroedinger-Dirac equation in space of UM. By the correspondent EL equations, DC and SM are connected to DSV and become responsible for the non-linear features of the system i.e. interactions. In this paper we mark breaking of a background paradigm of the modern QFT, the superposition principle. The issue of the UM-MF dimensionality will be addressed, and relations to the principles and methodology of QFT and GTR will be discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)