Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On numerically hypercyclic operators (1302.2483v1)

Published 11 Feb 2013 in math.FA and math.DS

Abstract: According to Kim, Peris and Song, a continuous linear operator $T$ on a complex Banach space $X$ is called {\it numerically hypercyclic} if the numerical orbit ${f(Tnx):n\in\N}$ is dense in $\C$ for some $x\in X$ and $f\in X*$ satisfying $|x|=|f|=f(x)=1$. They have characterized numerically hypercyclic weighted shifts and provided an example of a numerically hypercyclic operator on $\C2$. We answer two questions of Kim, Peris and Song. Namely, we construct a numerically hypercyclic operator, whose square is not numerically hypercyclic as well as an operator which is not numerically hypercyclic but has two numerical orbits whose union is dense in $\C$. We characterize numerically hypercyclic operators on $\C2$ as well as the operators similar to a numerically hypercyclic one and those operators whose conjugacy class consists entirely of numerically hypercyclic operators. We describe in spectral terms the operator norm closure of the set of numerically hypercyclic operators on a reflexive Banach space. Finally, we provide criteria for numeric hypercyclicity and decide upon the numerical hypercyclicity of operators from various classes.

Summary

We haven't generated a summary for this paper yet.