Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spin polynomial functors and representations of Schur superalgebras (1302.0042v1)

Published 1 Feb 2013 in math.RT and math.RA

Abstract: We introduce categories of homogeneous strict polynomial functors, $\Pol\I_{d,\k}$ and $\Pol\II_{d,\k}$, defined on vector superspaces over a field $\k$ of characteristic not equal 2. These categories are related to polynomial representations of the supergroups $GL(m|n)$ and Q(n), respectively. In particular, we prove an equivalence between $\Pol\I_{d,\k}$, $\Pol\II_{d,\k}$ and the category of finite dimensional supermodules over the Schur superalgebra $\Sc(m|n,d)$, $\Qc(n,d)$ respectively provided $m,n \ge d$. We also discuss some aspects of Sergeev duality from the viewpoint of the category $\Pol\II_{d,\k}$.

Summary

We haven't generated a summary for this paper yet.