Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Qualitative Models for Decision Under Uncertainty without the Commensurability Assumption (1301.6694v1)

Published 23 Jan 2013 in cs.AI

Abstract: This paper investigates a purely qualitative version of Savage's theory for decision making under uncertainty. Until now, most representation theorems for preference over acts rely on a numerical representation of utility and uncertainty where utility and uncertainty are commensurate. Disrupting the tradition, we relax this assumption and introduce a purely ordinal axiom requiring that the Decision Maker (DM) preference between two acts only depends on the relative position of their consequences for each state. Within this qualitative framework, we determine the only possible form of the decision rule and investigate some instances compatible with the transitivity of the strict preference. Finally we propose a mild relaxation of our ordinality axiom, leaving room for a new family of qualitative decision rules compatible with transitivity.

Citations (26)

Summary

We haven't generated a summary for this paper yet.