Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Connectivity Thresholds in the Intersection of Random Key Graphs on Random Geometric Graphs (1301.6422v2)

Published 28 Jan 2013 in cs.IT, math.CO, math.IT, and math.PR

Abstract: In a random key graph (RKG) of $n$ nodes each node is randomly assigned a key ring of $K_n$ cryptographic keys from a pool of $P_n$ keys. Two nodes can communicate directly if they have at least one common key in their key rings. We assume that the $n$ nodes are distributed uniformly in $[0,1]2.$ In addition to the common key requirement, we require two nodes to also be within $r_n$ of each other to be able to have a direct edge. Thus we have a random graph in which the RKG is superposed on the familiar random geometric graph (RGG). For such a random graph, we obtain tight bounds on the relation between $K_n,$ $P_n$ and $r_n$ for the graph to be asymptotically almost surely connected.

Citations (2)

Summary

We haven't generated a summary for this paper yet.