Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nilpotent commuting varieties of the Witt algebra (1301.5667v1)

Published 23 Jan 2013 in math.RT and math.RA

Abstract: Let $\mathfrak{g}$ be the $p$-dimensional Witt algebra over an algebraically closed field $k$ of characteristic $p>3$. Let $\mathscr{N}={x\in\ggg\mid x{[p]}=0}$ be the nilpotent variety of $\mathfrak{g}$, and $\mathscr{C}(\mathscr{N}):={(x,y)\in \mathscr{N}\times\mathscr{N}\mid [x,y]=0}$ the nilpotent commuting variety of $\mathfrak{g}$. As an analogue of Premet's result in the case of classical Lie algebras [A. Premet, Nilpotent commuting varieties of reductive Lie algebras. Invent. Math., 154, 653-683, 2003.], we show that the variety $\mathscr{C}(\mathscr{N})$ is reducible and equidimensional. Irreducible components of $\mathscr{C}(\mathscr{N})$ and their dimension are precisely given. Furthermore, the nilpotent commuting varieties of Borel subalgebras are also determined.

Summary

We haven't generated a summary for this paper yet.