Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An interpretation of the Sigma-2 fragment of classical Analysis in System T (1301.5089v3)

Published 22 Jan 2013 in math.LO and cs.LO

Abstract: We show that it is possible to define a realizability interpretation for the $\Sigma_2$-fragment of classical Analysis using G\"odel's System T only. This supplements a previous result of Schwichtenberg regarding bar recursion at types 0 and 1 by showing how to avoid using bar recursion altogether. Our result is proved via a conservative extension of System T with an operator for composable continuations from the theory of programming languages due to Danvy and Filinski. The fragment of Analysis is therefore essentially constructive, even in presence of the full Axiom of Choice schema: Weak Church's Rule holds of it in spite of the fact that it is strong enough to refute the formal arithmetical version of Church's Thesis.

Citations (3)

Summary

We haven't generated a summary for this paper yet.