Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Removing batch effects for prediction problems with frozen surrogate variable analysis (1301.3947v1)

Published 16 Jan 2013 in stat.ME, stat.AP, and stat.CO

Abstract: Batch effects are responsible for the failure of promising genomic prognos- tic signatures, major ambiguities in published genomic results, and retractions of widely-publicized findings. Batch effect corrections have been developed to re- move these artifacts, but they are designed to be used in population studies. But genomic technologies are beginning to be used in clinical applications where sam- ples are analyzed one at a time for diagnostic, prognostic, and predictive applica- tions. There are currently no batch correction methods that have been developed specifically for prediction. In this paper, we propose an new method called frozen surrogate variable analysis (fSVA) that borrows strength from a training set for individual sample batch correction. We show that fSVA improves prediction ac- curacy in simulations and in public genomic studies. fSVA is available as part of the sva Bioconductor package.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.