Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Block Coordinate Descent for Sparse NMF (1301.3527v2)

Published 15 Jan 2013 in cs.LG and cs.NA

Abstract: Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data analysis. An important variant is the sparse NMF problem which arises when we explicitly require the learnt features to be sparse. A natural measure of sparsity is the L$_0$ norm, however its optimization is NP-hard. Mixed norms, such as L$_1$/L$_2$ measure, have been shown to model sparsity robustly, based on intuitive attributes that such measures need to satisfy. This is in contrast to computationally cheaper alternatives such as the plain L$_1$ norm. However, present algorithms designed for optimizing the mixed norm L$_1$/L$_2$ are slow and other formulations for sparse NMF have been proposed such as those based on L$_1$ and L$_0$ norms. Our proposed algorithm allows us to solve the mixed norm sparsity constraints while not sacrificing computation time. We present experimental evidence on real-world datasets that shows our new algorithm performs an order of magnitude faster compared to the current state-of-the-art solvers optimizing the mixed norm and is suitable for large-scale datasets.

Citations (19)

Summary

We haven't generated a summary for this paper yet.