Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-processing for Triangulation of Probabilistic Networks (1301.2256v1)

Published 10 Jan 2013 in cs.AI and cs.DS

Abstract: The currently most efficient algorithm for inference with a probabilistic network builds upon a triangulation of a network's graph. In this paper, we show that pre-processing can help in finding good triangulations forprobabilistic networks, that is, triangulations with a minimal maximum clique size. We provide a set of rules for stepwise reducing a graph, without losing optimality. This reduction allows us to solve the triangulation problem on a smaller graph. From the smaller graph's triangulation, a triangulation of the original graph is obtained by reversing the reduction steps. Our experimental results show that the graphs of some well-known real-life probabilistic networks can be triangulated optimally just by preprocessing; for other networks, huge reductions in their graph's size are obtained.

Citations (42)

Summary

We haven't generated a summary for this paper yet.