Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrap Testing of the Rank of a Matrix via Least Squared Constrained Estimation (1301.0768v1)

Published 4 Jan 2013 in math.ST and stat.TH

Abstract: In order to test if an unknown matrix has a given rank (null hypothesis), we consider the family of statistics that are minimum squared distances between an estimator and the manifold of fixed-rank matrix. Under the null hypothesis, every statistic of this family converges to a weighted chi-squared distribution. In this paper, we introduce the constrained bootstrap to build bootstrap estimate of the law under the null hypothesis of such statistics. As a result, the constrained bootstrap is employed to estimate the quantile for testing the rank. We provide the consistency of the procedure and the simulations shed light one the accuracy of the constrained bootstrap with respect to the traditional asymptotic comparison. More generally, the results are extended to test if an unknown parameter belongs to a sub-manifold locally smooth. Finally, the constrained bootstrap is easy to compute, it handles a large family of tests and it works under mild assumptions.

Summary

We haven't generated a summary for this paper yet.