Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Construction of the Inclusion Boundary Neighbourhood for Markov Equivalence Classes of Bayesian Network Structures (1301.0553v1)

Published 12 Dec 2012 in cs.AI

Abstract: The problem of learning Markov equivalence classes of Bayesian network structures may be solved by searching for the maximum of a scoring metric in a space of these classes. This paper deals with the definition and analysis of one such search space. We use a theoretically motivated neighbourhood, the inclusion boundary, and represent equivalence classes by essential graphs. We show that this search space is connected and that the score of the neighbours can be evaluated incrementally. We devise a practical way of building this neighbourhood for an essential graph that is purely graphical and does not explicitely refer to the underlying independences. We find that its size can be intractable, depending on the complexity of the essential graph of the equivalence class. The emphasis is put on the potential use of this space with greedy hill -climbing search

Citations (26)

Summary

We haven't generated a summary for this paper yet.