Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Murty-Simon Conjecture II (1301.0460v1)

Published 3 Jan 2013 in math.CO and cs.DM

Abstract: A graph is diameter two edge-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter two edge-critical graph on $n$ vertices is at most $\lfloor \frac{n{2}}{4} \rfloor$ and the extremal graph is the complete bipartite graph $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$. In the series papers [7-9], the Murty-Simon Conjecture stated by Haynes et al. is not the original conjecture, indeed, it is only for the diameter two edge-critical graphs of even order. In this paper, we completely prove the Murty-Simon Conjecture for the graphs whose complements have vertex connectivity $\ell$, where $\ell = 1, 2, 3$; and for the graphs whose complements have an independent vertex cut of cardinality at least three.

Citations (2)

Summary

We haven't generated a summary for this paper yet.