2000 character limit reached
Singular limits for the two-phase Stefan problem (1212.6447v1)
Published 28 Dec 2012 in math.AP
Abstract: We prove strong convergence to singular limits for a linearized fully inhomogeneous Stefan problem subject to surface tension and kinetic undercooling effects. Different combinations of $\sigma \to \sigma_0$ and $\delta \to\delta_0$, where $\sigma,\sigma_0 \ge 0$ and $\delta,\delta_0 \ge 0$ denote surface tension and kinetic undercooling coefficients respectively, altogether lead to five different types of singular limits. Their strong convergence is based on uniform maximal regularity estimates.