Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic proof of upper bound for the heat kernel coupled with geometric flow, and Ricci flow (1212.5112v1)

Published 20 Dec 2012 in math.PR and math.DG

Abstract: We give a proof of Gaussian upper bound for the heat kernel coupled with the Ricci ow. Previous proofs by Lei Ni [5] use Harnack inequality and doubling volume property, also the recent proof by Zhang and Cao [6] uses Sobolev type inequality that is conserved along Ricci ow. We will use a horizontal coupling of curve [1] Arnaudon Thalmaier, C., in order to generalize Harnack inequality with power -for inhomogeneous heat equation - introduced by F.Y Wang. In the case of Ricci ow, we will derive on-diagonal bound of the Heat kernel along Ricci ow (and also for the usual Heat kernel on complete Manifold).

Summary

We haven't generated a summary for this paper yet.