Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic complexity of Bayesian networks (1212.2511v1)

Published 19 Oct 2012 in cs.LG and stat.ML

Abstract: Bayesian networks are now being used in enormous fields, for example, diagnosis of a system, data mining, clustering and so on. In spite of their wide range of applications, the statistical properties have not yet been clarified, because the models are nonidentifiable and non-regular. In a Bayesian network, the set of its parameter for a smaller model is an analytic set with singularities in the space of large ones. Because of these singularities, the Fisher information matrices are not positive definite. In other words, the mathematical foundation for learning was not constructed. In recent years, however, we have developed a method to analyze non-regular models using algebraic geometry. This method revealed the relation between the models singularities and its statistical properties. In this paper, applying this method to Bayesian networks with latent variables, we clarify the order of the stochastic complexities.Our result claims that the upper bound of those is smaller than the dimension of the parameter space. This means that the Bayesian generalization error is also far smaller than that of regular model, and that Schwarzs model selection criterion BIC needs to be improved for Bayesian networks.

Citations (38)

Summary

We haven't generated a summary for this paper yet.