Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Regularity Lemma and Faster Approximation Algorithms for Low Threshold Rank Graphs (1212.1831v1)

Published 8 Dec 2012 in cs.DS and math.SP

Abstract: Kolla and Tulsiani [KT07,Kolla11} and Arora, Barak and Steurer [ABS10] introduced the technique of subspace enumeration, which gives approximation algorithms for graph problems such as unique games and small set expansion; the running time of such algorithms is exponential in the threshold-rank of the graph. Guruswami and Sinop [GS11,GS12], and Barak, Raghavendra, and Steurer [BRS11] developed an alternative approach to the design of approximation algorithms for graphs of bounded threshold-rank, based on semidefinite programming relaxations in the Lassere hierarchy and on novel rounding techniques. These algorithms are faster than the ones based on subspace enumeration and work on a broad class of problems. In this paper we develop a third approach to the design of such algorithms. We show, constructively, that graphs of bounded threshold-rank satisfy a weak Szemeredi regularity lemma analogous to the one proved by Frieze and Kannan [FK99] for dense graphs. The existence of efficient approximation algorithms is then a consequence of the regularity lemma, as shown by Frieze and Kannan. Applying our method to the Max Cut problem, we devise an algorithm that is faster than all previous algorithms, and is easier to describe and analyze.

Citations (24)

Summary

We haven't generated a summary for this paper yet.