Random curves on surfaces induced from the Laplacian determinant (1211.6974v2)
Abstract: We define natural probability measures on cycle-rooted spanning forests (CRSFs) on graphs embedded on a surface with a Riemannian metric. These measures arise from the Laplacian determinant and depend on the choice of a unitary connection on the tangent bundle to the surface. We show that, for a sequence of graphs $(G_n)$ conformally approximating the surface, the measures on CRSFs of $G_n$ converge and give a limiting probability measure on finite multicurves (finite collections of pairwise disjoint simple closed curves) on the surface, independent of the approximating sequence. Wilson's algorithm for generating spanning trees on a graph generalizes to a cycle-popping algorithm for generating CRSFs for a general family of weights on the cycles. We use this to sample the above measures. The sampling algorithm, which relates these measures to the loop-erased random walk, is also used to prove tightness of the sequence of measures, a key step in the proof of their convergence. We set the framework for the study of these probability measures and their scaling limits and state some of their properties.