Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The highest lowest zero of general L-functions (1211.5996v2)

Published 26 Nov 2012 in math.NT

Abstract: Stephen D. Miller showed that, assuming the generalized Riemann Hypothesis, every entire $L$-function of real archimedian type has a zero in the interval $\frac12+i t$ with $-t_0 < t < t_0$, where $t_0\approx 14.13$ corresponds to the first zero of the Riemann zeta function. We give an example of a self-dual degree-4 $L$-function whose first positive imaginary zero is at $t_1\approx 14.496$. In particular, Miller's result does not hold for general $L$-functions. We show that all $L$-functions satisfying some additional (conjecturally true) conditions have a zero in the interval $(-t_2,t_2)$ with $t_2\approx 22.661$.

Summary

We haven't generated a summary for this paper yet.