Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotics for a Bayesian nonparametric estimator of species variety (1211.5422v1)

Published 23 Nov 2012 in math.ST and stat.TH

Abstract: In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently, it has been shown that they can also be exploited in species sampling problems: indeed they are natural tools for modeling the random proportions of species within a population thus allowing for inference on various quantities of statistical interest. For applications that involve large samples, the exact evaluation of the corresponding estimators becomes impracticable and, therefore, asymptotic approximations are sought. In the present paper, we study the limiting behaviour of the number of new species to be observed from further sampling, conditional on observed data, assuming the observations are exchangeable and directed by a normalized generalized gamma process prior. Such an asymptotic study highlights a connection between the normalized generalized gamma process and the two-parameter Poisson-Dirichlet process that was previously known only in the unconditional case.

Summary

We haven't generated a summary for this paper yet.