Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The MDS Queue: Analysing the Latency Performance of Erasure Codes (1211.5405v3)

Published 23 Nov 2012 in cs.IT, cs.NI, math.IT, and math.OC

Abstract: In order to scale economically, data centers are increasingly evolving their data storage methods from the use of simple data replication to the use of more powerful erasure codes, which provide the same level of reliability as replication but at a significantly lower storage cost. In particular, it is well known that Maximum-Distance-Separable (MDS) codes, such as Reed-Solomon codes, provide the maximum storage efficiency. While the use of codes for providing improved reliability in archival storage systems, where the data is less frequently accessed (or so-called "cold data"), is well understood, the role of codes in the storage of more frequently accessed and active "hot data", where latency is the key metric, is less clear. In this paper, we study data storage systems based on MDS codes through the lens of queueing theory, and term this the "MDS queue." We analytically characterize the (average) latency performance of MDS queues, for which we present insightful scheduling policies that form upper and lower bounds to performance, and are observed to be quite tight. Extensive simulations are also provided and used to validate our theoretical analysis. We also employ the framework of the MDS queue to analyse different methods of performing so-called degraded reads (reading of partial data) in distributed data storage.

Citations (105)

Summary

We haven't generated a summary for this paper yet.