Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of three graph Laplacian based semi-supervised learning methods to protein function prediction problem (1211.4289v3)

Published 19 Nov 2012 in cs.LG, cs.CE, q-bio.QM, and stat.ML

Abstract: Protein function prediction is the important problem in modern biology. In this paper, the un-normalized, symmetric normalized, and random walk graph Laplacian based semi-supervised learning methods will be applied to the integrated network combined from multiple networks to predict the functions of all yeast proteins in these multiple networks. These multiple networks are network created from Pfam domain structure, co-participation in a protein complex, protein-protein interaction network, genetic interaction network, and network created from cell cycle gene expression measurements. Multiple networks are combined with fixed weights instead of using convex optimization to determine the combination weights due to high time complexity of convex optimization method. This simple combination method will not affect the accuracy performance measures of the three semi-supervised learning methods. Experiment results show that the un-normalized and symmetric normalized graph Laplacian based methods perform slightly better than random walk graph Laplacian based method for integrated network. Moreover, the accuracy performance measures of these three semi-supervised learning methods for integrated network are much better than the best accuracy performance measures of these three methods for the individual network.

Citations (21)

Summary

We haven't generated a summary for this paper yet.