Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed (1211.4259v1)

Published 18 Nov 2012 in stat.AP, q-bio.GN, and stat.ME

Abstract: When dealing with large scale gene expression studies, observations are commonly contaminated by unwanted variation factors such as platforms or batches. Not taking this unwanted variation into account when analyzing the data can lead to spurious associations and to missing important signals. When the analysis is unsupervised, e.g., when the goal is to cluster the samples or to build a corrected version of the dataset - as opposed to the study of an observed factor of interest - taking unwanted variation into account can become a difficult task. The unwanted variation factors may be correlated with the unobserved factor of interest, so that correcting for the former can remove the latter if not done carefully. We show how negative control genes and replicate samples can be used to estimate unwanted variation in gene expression, and discuss how this information can be used to correct the expression data or build estimators for unsupervised problems. The proposed methods are then evaluated on three gene expression datasets. They generally manage to remove unwanted variation without losing the signal of interest and compare favorably to state of the art corrections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.