Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Theoretical Results Concerning non-Parametric Estimation by Using a Judgment Post-stratification Sample (1211.4040v2)

Published 16 Nov 2012 in stat.ME, math.ST, and stat.TH

Abstract: In this paper, some of the properties of non-parametric estimation of the expectation of g(X) (any function of X), by using a Judgment Post-stratification Sample (JPS), are discussed. A class of estimators (including the standard JPS estimator and a JPS estimator proposed by Frey and Feeman (2012, Comput. Stat. Data An.)) is considered. The paper provides mean and variance of the members of this class, and examines their consistency and asymptotic distribution. Specifically, the results are for the estimation of population mean, population variance and CDF. We show that any estimators of the class may be less efficient than Simple Random Sampling (SRS) estimator for small sample sizes. We prove that the relative efficiency of some estimators in the class with respect to Balanced Ranked Set Sampling (BRSS) estimator tends to 1 as the sample size goes to infinity. Furthermore, the standard JPS mean estimator and, Frey and Feeman JPS mean estimator are specifically studied and we show that two estimator have the same asymptotic distribution. For the standard JPS mean estimator, in perfect ranking situations, optimum values of H (the ranking class size), for different sample sizes, are determined non-parametrically for populations that are not heavily skewed or thick tailed. We show that the standard JPS mean estimator may be more efficient than BRSS for large sample sizes, in situations in which we can use a larger class size for H in JPS set-up.

Summary

We haven't generated a summary for this paper yet.