A localized orthogonal decomposition method for semi-linear elliptic problems (1211.3551v2)
Abstract: In this paper we propose and analyze a new Multiscale Method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. For this purpose we construct a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations in small patches that have a diameter of order H |log H| where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size. To solve the arising equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space.