Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bispectrality of the Complementary Bannai-Ito Polynomials (1211.2461v2)

Published 11 Nov 2012 in math.CA, math-ph, and math.MP

Abstract: A one-parameter family of operators that have the complementary Bannai-Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai-Ito polynomials and also correspond to a $q\rightarrow-1$ limit of the Askey-Wilson polynomials. The eigenvalue equations for the CBI polynomials are found to involve second order Dunkl shift operators with reflections and exhibit quadratic spectra. The algebra associated to the CBI polynomials is given and seen to be a deformation of the Askey-Wilson algebra with an involution. The relation between the CBI polynomials and the recently discovered dual -1 Hahn and para-Krawtchouk polynomials, as well as their relation with the symmetric Hahn polynomials, is also discussed.

Summary

We haven't generated a summary for this paper yet.