Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequentiality and Adaptivity Gains in Active Hypothesis Testing (1211.2291v1)

Published 10 Nov 2012 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Consider a decision maker who is responsible to collect observations so as to enhance his information in a speedy manner about an underlying phenomena of interest. The policies under which the decision maker selects sensing actions can be categorized based on the following two factors: i) sequential vs. non-sequential; ii) adaptive vs. non-adaptive. Non-sequential policies collect a fixed number of observation samples and make the final decision afterwards; while under sequential policies, the sample size is not known initially and is determined by the observation outcomes. Under adaptive policies, the decision maker relies on the previous collected samples to select the next sensing action; while under non-adaptive policies, the actions are selected independent of the past observation outcomes. In this paper, performance bounds are provided for the policies in each category. Using these bounds, sequentiality gain and adaptivity gain, i.e., the gains of sequential and adaptive selection of actions are characterized.

Citations (59)

Summary

We haven't generated a summary for this paper yet.