Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Techniques of Improving Generalization Ability of Genetic Programming Solutions (1211.1119v1)

Published 6 Nov 2012 in cs.NE

Abstract: In the field of empirical modeling using Genetic Programming (GP), it is important to evolve solution with good generalization ability. Generalization ability of GP solutions get affected by two important issues: bloat and over-fitting. We surveyed and classified existing literature related to different techniques used by GP research community to deal with these issues. We also point out limitation of these techniques, if any. Moreover, the classification of different bloat control approaches and measures for bloat and over-fitting are also discussed. We believe that this work will be useful to GP practitioners in following ways: (i) to better understand concepts of generalization in GP (ii) comparing existing bloat and over-fitting control techniques and (iii) selecting appropriate approach to improve generalization ability of GP evolved solutions.

Citations (29)

Summary

We haven't generated a summary for this paper yet.