Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homotopy types of moment-angle complexes for flag complexes (1211.0873v5)

Published 5 Nov 2012 in math.AT and math.AC

Abstract: We study the homotopy types of moment-angle complexes, or equivalently, of complements of coordinate subspace arrangements. The overall aim is to identify the simplicial complexes K for which the corresponding moment-angle complex Z_K has the homotopy type of a wedge of spheres or a connected sum of sphere products. When K is flag, we identify in algebraic and combinatorial terms those K for which Z_K is homotopy equivalent to a wedge of spheres, and give a combinatorial formula for the number of spheres in the wedge. This extends results of Berglund and Joellenbeck on Golod rings and homotopy theoretical results of the first and third authors. We also establish a connection between minimally non-Golod rings and moment-angle complexes Z_K which are homotopy equivalent to a connected sum of sphere products. We go on to show that for any flag complex K the loop spaces of Z_K and DJ(K) are homotopy equivalent to a product of spheres and loops on spheres when localised rationally or at any odd prime.

Summary

We haven't generated a summary for this paper yet.