Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary values of resolvents of self-adjoint operators in Krein spaces (1211.0791v4)

Published 5 Nov 2012 in math-ph, math.AP, math.MP, and math.SP

Abstract: We prove in this paper resolvent estimates for the boundary values of resolvents of selfadjoint operators on a Krein space: if $H$ is a selfadjoint operator on a Krein space $\cH$, equipped with the Krein scalar product $\langle \cdot| \cdot \rangle$, $A$ is the generator of a $C_{0}-$group on $\cH$ and $I\subset \rr$ is an interval such that: \begin{itemize} \item[]1) $H$ admits a Borel functional calculus on $I$, \item[]2) the spectral projection $\one_{I}(H)$ is positive in the Krein sense, \item[]3) the following {\em positive commutator estimate} holds: [ \Re \langle u| [H, \i A]u\rangle\geq c \langle u| u\rangle, \ u \in {\rm Ran}\one_{I}(H), \ c>0. ] \end{itemize} then assuming some smoothness of $H$ with respect to the group $\e{\i t A}$, the following resolvent estimates hold: [ \sup_{z\in I\pm \i]0, \nu]}| \langle A\rangle {-s}(H-z){-1}\langle A\rangle{-s}| <\infty, \ s>\12. ] As an application we consider abstract Klein-Gordon equations [ \p_{t}{2}\phi(t)- 2 \i k \phi(t)+ h\phi(t)=0, ] and obtain resolvent estimates for their generators in {\em charge spaces} of Cauchy data.

Summary

We haven't generated a summary for this paper yet.