Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Threshold Models over Finite Networks (1211.0654v2)

Published 4 Nov 2012 in cs.DM, cs.GT, and cs.SI

Abstract: We study a model for cascade effects over finite networks based on a deterministic binary linear threshold model. Our starting point is a networked coordination game where each agent's payoff is the sum of the payoffs coming from pairwise interactions with each of the neighbors. We first establish that the best response dynamics in this networked game is equivalent to the linear threshold dynamics with heterogeneous thresholds over the agents. While the previous literature has studied such linear threshold models under the assumption that each agent may change actions at most once, a study of best response dynamics in such networked games necessitates an analysis that allows for multiple switches in actions. In this paper, we develop such an analysis and construct a combinatorial framework to understand the behavior of the model. To this end, we establish that the agents behavior cycles among different actions in the limit and provide three sets of results. We first characterize the limiting behavioral properties of the dynamics. We determine the length of the limit cycles and reveal bounds on the time steps required to reach such cycles for different network structures. We then study the complexity of decision/counting problems that arise within the context. Specifically, we consider the tractability of counting the number of limit cycles and fixed-points, and deciding the reachability of action profiles. We finally propose a measure of network resilience that captures the nature of the involved dynamics. We prove bounds and investigate the resilience of different network structures under this measure.

Citations (12)

Summary

We haven't generated a summary for this paper yet.