Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Queuing with future information (1211.0618v3)

Published 3 Nov 2012 in math.PR, cs.NI, and cs.PF

Abstract: We study an admissions control problem, where a queue with service rate $1-p$ receives incoming jobs at rate $\lambda\in(1-p,1)$, and the decision maker is allowed to redirect away jobs up to a rate of $p$, with the objective of minimizing the time-average queue length. We show that the amount of information about the future has a significant impact on system performance, in the heavy-traffic regime. When the future is unknown, the optimal average queue length diverges at rate $\sim\log_{1/(1-p)}\frac{1}{1-\lambda}$, as $\lambda\to 1$. In sharp contrast, when all future arrival and service times are revealed beforehand, the optimal average queue length converges to a finite constant, $(1-p)/p$, as $\lambda\to1$. We further show that the finite limit of $(1-p)/p$ can be achieved using only a finite lookahead window starting from the current time frame, whose length scales as $\mathcal{O}(\log\frac{1}{1-\lambda})$, as $\lambda\to1$. This leads to the conjecture of an interesting duality between queuing delay and the amount of information about the future.

Citations (27)

Summary

We haven't generated a summary for this paper yet.