Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 33 tok/s Pro
GPT-4o 78 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 237 tok/s Pro
2000 character limit reached

The Seiberg-Witten Kahler Potential as a Two-Sphere Partition Function (1211.0019v2)

Published 31 Oct 2012 in hep-th

Abstract: Recently it has been shown that the two-sphere partition function of a gauged linear sigma model of a Calabi-Yau manifold yields the exact quantum Kahler potential of the Kahler moduli space of that manifold. Since four-dimensional N=2 gauge theories can be engineered by non-compact Calabi-Yau threefolds, this implies that it is possible to obtain exact gauge theory Kahler potentials from two-sphere partition functions. In this paper, we demonstrate that the Seiberg-Witten Kahler potential can indeed be obtained as a two-sphere partition function. To be precise, we extract the quantum Kahler metric of 4D N=2 SU(2) Super-Yang-Mills theory by taking the field theory limit of the Kahler parameters of the O(-2,-2) bundle over P1 x P1. We expect this method of computing the Kahler potential to generalize to other four-dimensional N=2 gauge theories that can be geometrically engineered by toric Calabi-Yau threefolds.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube