Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stopping criterion for Markov chains when generating independent random graphs (1210.8184v1)

Published 30 Oct 2012 in cs.SI, cs.DM, and physics.soc-ph

Abstract: Markov chains are convenient means of generating realizations of networks with a given (joint or otherwise) degree distribution, since they simply require a procedure for rewiring edges. The major challenge is to find the right number of steps to run such a chain, so that we generate truly independent samples. Theoretical bounds for mixing times of these Markov chains are too large to be practically useful. Practitioners have no useful guide for choosing the length, and tend to pick numbers fairly arbitrarily. We give a principled mathematical argument showing that it suffices for the length to be proportional to the number of desired number of edges. We also prescribe a method for choosing this proportionality constant. We run a series of experiments showing that the distributions of common graph properties converge in this time, providing empirical evidence for our claims.

Citations (17)

Summary

We haven't generated a summary for this paper yet.